BlazingSQL

BlazingSQL Documentation

Welcome to our Documentation and Support Page!

BlazingSQL is a GPU accelerated SQL engine built on top of the RAPIDS AI data science framework. RAPIDS AI is a collection of open-source libraries for end-to-end data science pipelines entirely in the GPU. BlazingSQL extends RAPIDS AI and enables users to run SQL queries on Apache Arrow in GPU memory.

Please install, test, deploy, and gripe in our Discussion board.

Get Started
Ask A Question

Questions

12

CSV table create and SQL query error

Greetings to everyone I'm running tests on my server that supports Cuda 10.1. I'm using BlazingDB with docker container. But I get this error when I want to run sql using csv: "CUDA error encountered at: /home/builder/workspace/cudf_project/develop/cudf/cpp/src/io/utilities/parsing_utils.cu:145: 8 cudaErrorInvalidDeviceFunction invalid device function" my nvidia-smi result is: +-----------------------------------------------------------------------------+ | NVIDIA-SMI 418.39 Driver Version: 418.39 CUDA Version: 10.1 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Quadro M4000 Off | 00000000:01:00.0 Off | N/A | | 46% 40C P8 11W / 120W | 99MiB / 8125MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 10067 C /home/jupyter/testing-libgdf 57MiB | | 0 27302 C /conda/envs/cudf/bin/python 56MiB | +-----------------------------------------------------------------------------+ and my test py is: from blazingsql import BlazingContext bc = BlazingContext() column_names = ['date','name'] column_types = ['str','str'] bc.create_table('gtd', '/blazingdb/data/csv/gtd2017.csv', delimiter=',', dtype=column_types, names=column_names) result2 = bc.sql('SELECT * FROM main.gtd', ['gtd']) result = result2.get() gdf = result2.columns print(gdf) Thanks.

Posted by Melih about a month ago